工业源氮氧化物排放具有来源分布广、烟气组成复杂、工况波动大等特点,一定程度上增加了其治理难度。以水泥行业为例,其窑炉烟气中含有大量的高黏性碱尘。若采用燃煤电厂中广泛应用的中温SCR脱硝技术,则在催化剂稳定运行方面存在诸多挑战,如容易发生孔道堵塞和碱金属中毒等问题。除碱尘外,高浓度水汽、SO2以及Pb、Cd等重金属离子也是干扰SCR的重要因素。
火电、水泥和钢铁是工业源氮氧化物排放多的三个行业,**已采取一定的管控措施。如对火电和钢铁行业,我国执行的是全世界为严格的低排放标准(NOx小于50 mg/m3,标准状况下,后同),水泥行业一些地方标准也开始要求氮氧化物排放不过100 mg/m3。此外,玻璃、陶瓷、垃圾焚烧、燃气锅炉等与人们日常生活密切相关的行业也存在大量氮氧化物排放的问题[5],若不加以严格控制,将会对社会的正常运转产生严重影响。
对于现有的烟气治理,虽然建立了烟气排放标准,但各种成本较低的非催化烟气脱硝技术,如SNCR(选择性非催化还原)、高分子脱硝、氧化吸收脱硝、活性焦脱硝等仍作为企业选择的主要方法(表1)。其存在处理效率不够高的问题,为重要的是,这些技术在正常运行中会不可避免产生逃逸、臭氧泄漏等二次污染,存在一定安全隐患,使得烟气污染物减排效果大大削弱。因此,使用烟气净化效率高、性能为安全可靠的SCR技术是未来工业源氮氧化物排放控制发展总的趋势。
表2总结了一些代表性行业的烟气组成及目前脱硝技术使用与NOx 排放限值情况。从中可以看出,除电力和焦化等个别行业外,SCR技术在我国大部分工业领域还未得到应用,这一方面与政策法规的推动进度有关,重要的是因为烟气中含有大量干扰组分,使得SCR催化剂在真实工况条件下难以稳定运行。
为了使SCR 技术能够适用于不**业的烟气脱硝,一条理想途径是对烟气进行预处理,即脱硝前先除尘和脱硫。经过这一环节后,烟气组分相对“干净”,行业间工况差别也变得小。但此时烟气温度大幅下降,多在150℃以下甚至低。考虑到目前已开发的低温脱硝催化剂工作温度窗口多在180℃以上,为了与催化剂工作温度相匹配,往往需要额外加装预热/换热装置,这无形中增加了脱硝的运行成本。因此,开发适应低温(<150℃)工况的SCR技术,可大幅降低运行成本,对于推动发展SCR技术意义重大。
系统概述
系统基本情况
监测内容:NH3。输出单位:ppm。
PUE-9000 抽取式激体分析系统是针对多种工况,用在线工业仪器对其NH3\HCl\HF 浓度进行连续在线测量。
系统组成:
采样装置
预处理装置
激光分析仪
反吹控制单元
特 点
取样具代表性:采样点插入烟道区域,可根据现场情况设置采样点位置及采样管的长度。
抽取式测量,不受现场震动等环境因素的影响。
非常方便通入标准气体,可以随时标定及验证。
采用多次反射样气室大大提高测量下限与测量精度。
漂移量少,长期稳定性优异。
因使用与测量组分吸收波长相匹配的近红外半导体激光,测量精度高,不受背景气体交叉干扰。
可在高温和高粉尘环境下测量(防堵性能进一步提升)。